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Necessary and sufficient conditions are given for the convergence of infinite
products of matrices of complex numbers. The results are applied to the solution of
periodic matrix refinement equations. Conditions are given for the solutions to be
in L2([0, 2?)s) and generate a multiresolution of multiplicity r. A general algorithm
for constructing multidimensional periodic multiwavelets from a scaling vector
which generates a multiresolution is also given. � 1999 Academic Press
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1. INTRODUCTION

Let s be a positive integer and M be an s_s matrix with integer entries
such that all its eigenvalues lie outside the unit circle. For k�0, let Lk

denote a full collection of coset representatives of Zs�M kZs and Rk denote
a full collection of coset representatives of Zs�Dk Zs where

D=MT. (1.1)

Then

Zs= .
l # Lk

(l+M kZs)= .
j # Rk

( j+DkZs),

and for any distinct l1 , l2 # Lk , j1 , j2 # Rk ,

(l1+M kZs) & (l2+Mk Zs)=<=( j1+DkZs) & ( j2+DkZs).

As an illustration, for M=D=2Is where Is is the s_s identity matrix, we
may take Lk=Rk=[0, 1, ..., 2k&1]s.
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Throughout the paper, we shall denote

d :=|det(M)|=|det(D)|. (1.2)

Then d k=|Lk |=|Rk |.
A sequence of subspaces [Vk : k�0] of L2([0, 2?)s) is a periodic multi-

resolution (MR) of L2([0, 2?)s) with multiplicity r and dilation matrix M if
it satisfies the following conditions:

MR1. For k=0, 1, ..., dim Vk=r |det(M k)| and there exist functions
,m

k # Vk , m=1, 2, ..., r, such that [Tl
k,m

k : m=1, 2, ..., r, l # Lk] is a basis
for Vk , where Tl

k f :=f ( } &2?M&kl).

MR2. For k=0, 1, ..., Vk �Vk+1 .

MR3. �k�0 Vk =L2([0, 2?)s).

The functions ,m
k , k�0, m=1, 2, ..., r, are called scaling functions, and

,k :=(,1
k , ..., ,r

k)T, k�0, are called scaling vectors. The scaling vectors ,k

are said to generate the multiresolution [Vk : k�0]. A general theory of
periodic multiresolutions and wavelets for the one-dimensional scalar case
(s=r=1) with dilation M=2 was given in [18]. Periodic spline wavelets
and trigonometric wavelets were earlier studied in [8, 24, and 26]. More
results on the theory and its applications can be found in recent literatures
(see [2�6, 23, 28]). This paper develops the corresponding theory for
multiresolutions of multiplicity r with dilation matrix M and the construc-
tion of the corresponding multidimensional multiwavelets.

If the sequence ,k generates a multiresolution of multiplicity r with
dilation matrix M, then k=0, 1, ...,

,k= :
l # Lk+1

Hk+1(l) T l
k+1,k+1 , (1.3)

where Hk+1 # S(Mk+1)r_r, the class of periodic sequences of r_r complex
matrices of period Mk+1, that is, Hk+1(l+M k+1p)=Hk+1(l) for all
l, p # Zs.

For Hk+1 # S(M k+1)r_r, we define the finite Fourier transform of Hk+1

by

H� k+1( j)= :
l # Lk+1

Hk+1(l) e&ij } (2?M&(k+1) l), j # Rk+1 , (1.4)

where the dot in the exponent of e denotes scalar product. Since D=MT,
it follows that H� k+1 # S(Dk+1)r_r. On the other hand, if (1.4) holds, then

Hk+1(l)=
1

|Rk+1 |
:

j # Rk+1

H� k+1( j) eil } (2?D&(k+1) j), l # Lk+1 . (1.5)
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Thus the finite Fourier transform (1.4) and its inverse (1.5) provide a
one-to-one correspondence between S(Mk+1)r_r and S(Dk+1)r_r. The
formula (1.5) is obtained by using the relation (see [12])

:
j # Rk+1

e i(l&&) } (2?D&(k+1) j)={ |Rk+1 |,
0,

if l=&,
if l{&,

(1.6)

for l, & # Lk+1 . Note that the relation (1.6) also yields

1
|Rk+1 |

:
j # Rk+1

|:̂( j)|2= :
l # Lk+1

|:(l)| 2, : # S(Mk+1), (1.7)

where S(Mk+1) :=S(Mk+1)1_1.
By taking Fourier coefficients, we see that (1.3) is equivalent to

,� k(n)=H� k+1(n) ,� k+1(n), n # Zs, (1.8)

for k�0. Thus the first step in the construction of a periodic multireso-
lution with multiplicity r and dilation matrix M is to find a sequence of
vectors ak # l2(Zs)r satisfying

ak(n)=H� k+1(n) ak+1(n), n # Zs, (1.9)

for a given sequence of matrices Hk+1 # S(Mk+1)r_r. If such a sequence
of vectors ak exists, then for k�0, ak is the Fourier sequence of a scaling
vector ,k # L2([0, 2?)s)r that satisfies (1.3). Equation (1.3) or (1.9) is a
periodic analogue of the matrix refinement equation

8(x)= :
l # Zs

H(l) 8(Mx&l), x # Rs, (1.10)

which is the subject of intensive study in wavelet analysis and subdivision
processes. We shall call (1.3) or (1.9) a periodic matrix refinement equation.

Solutions of the matrix refinement equation (1.10) with a finitely supported
mask H(l) and their properties are the main focus of present research in multi-
wavelets (see [7, 9, 14, 15, 17, 20, 22, 27, 29]). In this case, many properties
of the solutions can be characterized in terms of the spectrum of the corre-
sponding transition operators. Finitely supported masks give compactly
supported scaling vectors. A general algorithm for the construction of
compactly supported univariate multiwavelets from a given compactly
supported scaling vector for the nonperiodic case can be found in [19]. We
remark that such a result on scaling vectors and multiwavelet construction
is not available for infinitely supported masks and non-compactly supported
multiwavelets. Our object here is the construction of periodic scaling vectors
and the corresponding multiwavelets. Our results cover both the periodic
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analogue of infinitely supported multivariate scaling vectors and multi-
wavelets as well as the finitely supported ones.

The solution of (1.9) depends on the analysis of the convergence of an
infinite product of matrices. This is done in Section 2, where necessary and
sufficient conditions for the convergence of infinite products of matrices of
complex numbers are first given and then applied to the solution of (1.9).
We also give conditions on H� k+1 in order that the solution of (1.9) leads
to scaling vectors in L2([0, 2?)s)r. The rest of the paper is organized as
follows. Section 3 deals with the linear independence of the shifts of the
scaling functions, and presents a necessary and sufficient condition for MR3
to be satisfied. The corresponding multiwavelets are constructed in Section 4.
Our analysis is enriched by a class of linearly independent functions which
we call polyphase splines, which is an extension of the orthogonal splines
introduced in [18]. We conclude the paper with a construction of a family
of periodic box spline wavelets in a three-direction mesh.

2. SOLUTIONS OF PERIODIC REFINEMENT EQUATIONS

We shall first establish a result on the uniform convergence of infinite
product of matrices of complex numbers. A matrix is said to satisfy Condi-
tion E* if 1 is a nondegenerate eigenvalue, and all its other eigenvalues lie
inside the unit circle. Equivalently, A satisfies Condition E* if and only if
An converges to a nonzero matrix as n � �.

Theorem 2.1. Let Al , l�1, be a sequence of r_r matrices of complex
numbers, and suppose that there exists an r_r matrix A such that

:
�

l=1

&Al&A&<�. (2.1)

Then the matrix product

Pk, n := `
k+n

l=k+1

Al (2.2)

converges uniformly in k as n � �, and

lim
k � �

lim
n � �

Pk, n exists and is nonzero, (2.3)

if and only if A satisfies Condition E*.
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Proof. Since the matrix A satisfies Condition E*, its spectral radius
\(A)=1, and the number 1 is its only eigenvalue on the unit circle and is
nondegenerate. Therefore, there is a matrix norm & }& such that &A&=1.
For all k�0, n�1,

" `
k+n

l=k+1

Al"� `
k+n

l=k+1

(&Al&A&+1)� `
k+n

l=k+1

exp(&Al&A&)

=exp \ :
k+n

l=k+1

&Al&A&+�C<�,

where C is an absolute constant �1. It follows that for any k�0, n�1,
and for any nonnegative m<n,

" `
k+n

l=k+1

Al&\ `
k+m

l=k+1

Al + An&m"�C 2 :
k+n

l=k+m+1

&Al&A&. (2.4)

Since A satisfies Condition E*, the unitary space Cr can be written as
Cr=E1 �Q, where E1 is the eigenspace of A corresponding to the eigen-
value 1, and the spectral radius \(A|Q)<1. Take any x # Cr and write
x=v+w, where v # E1 and w # Q. The inequality (2.4) gives

"\ `
k+n

l=k+1

Al+ v&\ `
k+m

l=k+1

Al+ v"="\ `
k+n

l=k+1

Al + v&\ `
k+m

l=k+1

Al+ An&mv"
�C2 &v& :

k+n

l=k+m+1

&Al&A&,

which tends to zero uniformly in k as m, n � �. Hence, (>k+n
l=k+1 Al) v

converges uniformly in k as n � �. Similarly, (2.4) gives

"\ `
k+n

l=k+1

Al+ w&\ `
k+m

l=k+1

Al+ An&mw"�C2 &w& :
k+n

l=k+m+1

&Al&A&.

Since An&mw � 0 as n&m � �, this means that

\ `
k+n

l=k+1

Al+ w � 0, as n � �.

Thus, for any x=v+w # Cr, (>k+n
l=k+1 Al) x converges uniformly in k as

n � �.
Now, with m=0, (2.4) becomes

" `
k+n

l=k+1

Al&An"�C :
k+n

l=k+1

&Al&A&.
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Taking limits as n � � gives

" `
�

l=k+1

Al&P"�C :
�

l=k+1

&Al&A&,

where P :=limn � � An. It follows that

lim
k � �

`
�

l=k+1

Al=P,

and P is nonzero since A satisfies Condition E*.
Conversely, suppose that the matrix product Pk, n :=>k+n

l=k+1 Al

converges uniformly in k as n � �, and

lim
k � �

lim
n � �

Pk, n=P,

where P is a nonzero matrix. Then

lim
n � �

An= lim
n � �

lim
k � �

`
k+n

l=k+1

Al=P. (2.5)

Hence A satisfies Condition E*. K

Corollary 2.1. For l�1, let H� l # S(Dl)r_r, and suppose that for
each n # Zs, there exists an r_r matrix H� (n) such that

:
�

l=1

&H� l(n)&H� (n)& (2.6)

converges. Then the infinite matrix product >�
l=k+1 H� l(n) converges uniformly

for k�0, and

lim
k � �

`
�

l=k+1

H� l(n) exists and is nonzero,

if and only if the matrix H� (n) satisfies Condition E*.
Furthermore, if H� (n) satisfies Condition E*, then

lim
k � �

`
�

l=k+1

H� l(n)= lim
m � �

H� (n)m. (2.7)

Theorem 2.1 has other applications. For instance, by taking Al(u) :=
A(u�2l), l�1 and u # Rs, where A(u) is an r_r matrix of functions, we
obtain the following general result on the convergence of infinite matrix
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product for the solution of matrix refinement equations (see [14]) under
very weak conditions.

Corollary 2.2. Let A(u), u # Rs, be an r_r matrix of continuous
functions such that

:
�

l=1

&A(u�2l)&A(0)&<�, u # Rs, (2.8)

where the convergence is uniform on compact sets. Then the infinite matrix
product >�

l=k+1 A(u�2l) converges locally uniformly in u and uniformly in k,
and

lim
k � �

`
�

l=k+1

A(u�2l) exists and is nonzero,

if and only if A(0) satisfies Condition E*.
Furthermore, if A(0) satisfies Condition E*, then

lim
k � �

`
�

l=k+1

A(u�2l)= lim
m � �

A(0)m. (2.9)

By Theorem 2.1, if A satisfies Condition E*, then for any 1-eigenvector
of A,

\ `
k+n

l=k+1

Al+ v � \ `
�

l=k+1

Al+ v

uniformly in k as n � �. We now extend this result to a matrix A with
spectral radius \(A)�1. If A has an eigenvalue * with |*|=\(A) such that
A�* satisfies Condition E*, then we say that A satisfies Condition E(*)*.

Theorem 2.2. Let Al , l�1, be a sequence of r_r matrices of complex
numbers, and suppose that there exists an r_r matrix A such that

:
�

l=1

\(A)l &Al&A&<�. (2.10)

If A satisfies Condition E(*)* and v is an 1-eigenvector of A, then

\ `
k+n

l=k+1

Al+ v � \ `
�

l=k+1

Al+ v (2.11)
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uniformly in k as n � �, and

lim
k � � \ `

�

l=k+1

Al+ v=v. (2.12)

Proof. For all integers k�0, n�1 and any 1-eigenvector v of A,

"\ `
k+n

l=k+1

Al+ v&\ `
k+n&1

l=k+1

Al+ v"="\ `
k+n

l=k+1

Al + v&\ `
k+n&1

l=k+1

Al+ Av"
�" `

k+n&1

l=k+1

Al" &v& &Ak+n&A&

�C |*| n&1 &Ak+n&A&,

where C is an absolute constant. Thus for m<n,

"\ `
k+n

l=k+1

Al+ v&\ `
k+m

l=k+1

Al+ v"�C |*| &k&1 :
n

l=m+1

|*|k+l &Ak+l&A&,

(2.13)

and so (2.11) holds by (2.10).
By (2.13) with m=0,

"\ `
k+n

l=k+1

Al+ v&v"="\ `
k+n

l=k+1

Al+ v&Anv"
�C |*|&k&1 :

k+n

l=k+1

|*| l &Al&A&.

Letting n � � and then taking the limit as k � � gives

lim
k � � \ `

�

l=k+1

Al+ v= lim
n � �

Anv=v,

and the proof is complete. K

Corollary 2.3. Let A(u), u # Rs, be an r_r matrix of continuous func-
tions such that A(0) satisfies Condition E(*)* where |*|=\(A(0))�1, and

:
�

l=1

|*| l &A(u�( |*|+=)l)&A(0)&<�, u # Rs, (2.14)
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for some =>0, where the convergence is uniform on compact sets. If v is an
1-eigenvector of A(0), then (>�

l=k+1 A(u�( |*|+=)l)) v converges locally
uniformly in u and uniformly in k, and

lim
k � � \ `

�

l=k+1

A(u�( |*|+=)l)+ v=v. (2.15)

Remark 1. If |*|=\(A(0))<2, the results of Corollary 2.3 hold for
|*|+==2. This special case was established in [14] and [9] under a
stronger assumption than (2.14).

We now consider conditions on Hk+1 that guarantee a solution ,k of
(1.3) in L2([0, 2?)s)r. To this end, we assume that for each n # Zs, there
exists an r_r matrix H� (n) that satisfies Condition E*, and that the
hypothesis of Corollary 2.1 is satisfied. Then the infinite matrix product
>�

l=k+1 H� l(n) exists by Corollary 2.1. Let v(n) # Cr be a sequence of non-
zero vectors such that

&v(n)&�K for all n # Zs, (2.16)

for some constant K>0. Define a sequence of vectors ak(n) # Cr by

ak(n) :=\ `
�

l=k+1

H� l(n)+ v(n). (2.17)

Then it follows that ak(n)=H� k+1(n) ak+1(n). Since

lim
k � �

`
�

l=k+1

H� l(n)= lim
m � �

H� (n)m=: P(n),

it also follows that

lim
k � �

ak(n)=P(n) v(n).

Furthermore, P(n) v(n) is an eigenvector of H� (n) with eigenvalue 1. If 1 is
a simple eigenvalue, then ,� k=ak is the unique solution (up to a constant
multiple) of (1.8).

The following theorem gives a sufficient condition for ak to be in l2(Zs)r.

Theorem 2.3. Suppose that for k�0,

:
l # R1

&H� k+1( j+Dkl)&2�1, j # Rk , (2.18)
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for some operator matrix norm. Then

:
p # Z s

&ak( j+Dkp)&2�K2, (2.19)

for all j # Rk .

Proof. First, observe that (2.18) implies that for k�0,

:
l # R1

&H� k+1(n+Dkl)&2�1, n # Zs, (2.20)

where R1 is any full collection of coset representatives of Zs�DZs.
We shall show that for any n # Zs and any full collection Rk of coset

representatives of Zs�Dk Zs, if m�k+1, then

:
p # Rm&k

`
m

l=k+1

&H� l(n+Dkp)&2�1. (2.21)

Note that it suffices to establish (2.21) for the collections Rk , k�1, that
satisfy

Rk+1=Rk+DkR1 , k�1. (2.22)

For n # Zs and m�k+1, (2.22) yields

:
p # Rm&k+1

`
m+1

l=k+1

&H� l(n+Dkp)&2

= :
p # Rm&k

:
& # R1

`
m+1

l=k+1

&H� l(n+Dk( p+Dm&k&))&2

= :
p # Rm&k

`
m

l=k+1

&H� l(n+Dkp)&2 \ :
& # R1

&H� m+1((n+Dkp)+Dm&)&2+ .

It then follows from (2.20) that

:
p # Rm&k+1

`
m+1

l=k+1

&H� l(n+Dkp)&2

� :
p # Rm&k

`
m

l=k+1

&H� l(n+Dkp)&2, m�k+1. (2.23)

Applying (2.23) repeatedly and using (2.20), we obtain

:
p # Rm&k+1

`
m+1

l=k+1

&H� l(n+Dkp)&2� :
p # R1

&H� k+1(n+Dkp)&2�1.
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It also follows from (2.20) that &H� k+1(n)&2�1 for all n # Zs. Thus for
m�k+1, p # Rm&k and n # Zs,

`
�

l=k+1

&H� l(n+Dkp)&2� `
m

l=k+1

&H� l(n+Dkp)&2. (2.24)

Since ak is defined by (2.17), it follows from (2.16), (2.24), and (2.21) that

:
p # Rm&k

&ak(n+Dkp)&2�K2, m�k+1, (2.25)

where Rm&k is any full collection of coset representatives of Zs�Dm&kZs.
Now, for a fixed positive number N, consider B(N) :=[ p # Zs: &p&�N].

Then there exists a sufficiently large positive integer m such that the
elements in B(N) lie in different cosets of Zs�Dm&kZs. Indeed, suppose that
for every m�k+1, there exist p1 , p2 # B(N), p1 { p2 , that lie in the same
coset of Zs�Dm&kZs. Then we may write p1& p2=Dm&kq for some
q # Zs"[0]. Consequently,

&Dm&kq&�&p1&+&p2 &�2N.

On the other hand, since q{0, we have

1�&q&�&D&(m&k)& &Dm&kq&.

Hence, for every m�k+1,

1
&D&(m&k)&

�2N. (2.26)

Since all the eigenvalues of D&1 lie inside the unit circle, (2.26) leads to a
contradiction as m � �.

With m such that the elements in B(N) lie in different cosets of Zs�Dm&kZs,
choose Rm&k to be a full collection of coset representatives of Zs�Dm&kZs

which contains B(N). Then (2.25) implies that

:
p # B(N)

&ak(n+Dkp)&2� :
p # Rm&k

&ak(n+Dkp)&2�K2.

Taking limits as N � � gives (2.19) and completes the proof of the
theorem. K
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In view of Theorem 2.3, if H� k+1 satisfies (2.18), and ,k is a sequence of
2?-periodic vector functions defined by

,� k(n) :=ak(n), n # Zs,

then ,k is an L2-solution of the periodic matrix refinement equation (1.9).
For the nonperiodic case of L2(Rs)r, solution of the matrix refinement

equation (1.10) with finitely supported masks are often studied in terms of
the cascade algorithm and transition operators. In [13], general results on
the convergence of nonstationary vector cascade algorithms were obtained.
It should be mentioned that based on the approach in [13], transition
operators corresponding to periodic analogues of finitely supported masks
can be defined and used to characterize solutions of the periodic matrix
refinement equation (1.9).

3. LINEAR INDEPENDENCE OF SOLUTIONS OF PERIODIC
REFINEMENT EQUATIONS

Fix k�0. To facilitate the discussion on the linear independence of the
shifts of scaling functions, we need to choose suitable coset representatives
of Zs�M kZs and Zs�DkZs. To this end, let [e1 , ..., es] be the standard basis
of the free abelian group Zs, and let f1 , ..., fs and g1 , ..., gs be the generators
of Mk Zs and Dk Zs respectively, where f1 , ..., fs and g1 , ..., gs are the
column vectors of Mk and Dk respectively. Then

fj= :
s

&=1

dj& e& , g j= :
s

&=1

mj& e& , (3.1)

where dj& and mj& denote the ( j, &)-entry of Dk and M k respectively.
Now, there exist invertible matrices P and Q in Ms(Z), the ring of all

s_s matrices with integer entries, such that

QDkP&1=diag(n1 , ..., ns)=(P&1)T MkQT, (3.2)

where n1 , ..., ns are positive integers (see [16, Theorem 3.8]). Note that

d k=|det(Mk)|=|det(Dk)|=n1 n2 } } } ns ,

where d is defined by (1.2). Write P=( pij), Q=(qij), P&1=( p~ ij), and
Q&1=(q~ ij). If we set

e$i= :
s

j=1

pij ej , f $i= :
s

j=1

qij fj , e"i= :
s

j=1

q~ ji ej , g$i= :
s

j=1

p~ ji gj ,
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then it follows from (3.1) and (3.2) that f $i=nie$i and g$i=nie"i , i=1, 2, ..., s.
Furthermore, [e$1 , ..., e$s] and [e"1 , ..., e"s] are bases of Zs, and [ f $1 , ..., f $s]
and [g$s , ..., g$s] are also sets of generators of Mk Zs and DkZs respectively.
Hence, we may choose the sets Lk and Rk of all coset representatives of
Zs�M kZs and Zs�DkZs respectively to be

Lk=[m1e$1+ } } } +mse$s : 0�mi<ni , i=1, 2, ..., s]

and

Rk=[+1 e"1+ } } } ++se"s : 0�+ i<ni , i=1, 2, ..., s].

We order Lk in such a way that

m1 e$1+ } } } +mse$s<r1 e$1+ } } } +rse$s

if and only if there exists a least integer i, i=1, 2, ..., s, for which mi<ri .
Write Lk=[l1 , ..., ldk], where l1< } } } <ldk .

Suppose that ,k=(,1
k , ..., ,r

k)T is an L2-solution of the periodic matrix
refinement equation (1.9). The linear independence of the set Sk :=[Tl

k ,m
k :

m=1, 2, ..., r, l # Lk] is equivalent to the invertibility of its Gram matrix
Gk , which can be expressed as Gk :=(8m+)r

m, +=1 , where

8m+ :=((Tlp
k ,m

k , T lq
k ,+

k) )dk

p, q=1

=((,m
k , T lq&lp

k ,+
k) )dk

p, q=1 , m, +=1, 2, ..., r,

are circulant matrices of level s and type (n1 , ..., ns) (see [11, pp. 184�188]).
Note that the matrix Gk is Hermitian and positive semi-definite. By [11,
Theorem 5.8.4], we have

8m+=F* \ :
n1&1

#1=0

} } } :
ns&1

#s=0

(,m
k , ,+

k( } &2?M&k(#1 e$1+ } } } +#se$s))) 0#+ F.

Here, F=Fn1
� } } } �Fns is the Kronecker product of the Fourier matrices

Fn&
, &=1, 2, ..., s (see [11] for the definitions), and 0#=0#1

n1
� } } } �0#s

ns
,

where

0n&
=diag(1, |n&

, |2
n&

, ..., |n&&1
n&

), |n&
=exp(2?i�n&).
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Consequently, we see that a typical eigenvalue of 8m+ is

:
n1&1

#1=0

} } } :
ns&1

#s=0

(,m
k , ,+

k( } &2?M&k(#1 e$1+ } } } +#se$s))) |#1:1
n1

} } } |#s :s
ns

= :
n # Z s

,� m
k (n) ,� +

k(n) :
n1&1

#1=0

} } } :
ns&1

#s=0

exp(in } (2?M&k(#1e$1+ } } } +#se$s)))

_|#1:1
n1

} } } |#s :s
ns

, (3.3)

where :&=0, 1, ..., n&&1, &=1, 2, ..., s. Using (3.2), (3.3) and the chosen
collections of coset representatives Lk and Rk , the eigenvalues of 8m+ can
be written as

* j
m+ :=d k :

p # Z s

,� m
k ( j+Dkp) ,� +

k( j+Dkp), j # Rk . (3.4)

Let us define polyphase splines vm
k, j by

vm
k, j(x) := :

p # Z s

,� m
k ( j+Dkp) ei( j+Dkp) } x, x # Rs, (3.5)

for m=1, 2, ..., r, j # Rk . Then it is easy to see that

(vm
k, j , v+

k, j)= :
p # Z s

,� m
k ( j+Dkp) ,� +

k( j+Dkp)=
* j

m+

d k . (3.6)

Note that for every p # Zs, j # Rk , we denote vm
k, j+Dkp :=vm

k, j .
The polyphase splines are extensions of the orthogonal splines (for the

scalar case of r=1) introduced in [18]. The orthogonal splines are always
orthogonal to each other whereas the polyphase splines need not be so.
However, the polyphase splines can still be used to characterize the linear
independence of Sk=[Tl

k ,m
k : m=1, 2, ..., r, l # Lk].

Now, for each j # Rk , let

Mk( j) :=((vm
k, j , v+

k, j) )r
m, +=1=

1
d k (* j

m+)r
m, +=1 . (3.7)

Note that Mk( j) is positive semi-definite, and by (3.6), we have

Mk( j)= :
p # Z s

,� k( j+Dkp) ,� k( j+Dkp)*

= :
l # R1

:
p # Z s

,� k( j+Dkl+Dk+1p) ,� k( j+Dkl+Dk+1p)*. (3.8)
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Since ,� k satisfies (1.9), we deduce from (3.8) that

Mk( j)= :
l # R1

H� k+1( j+Dkl) Mk+1( j+Dkl) H� k+1( j+Dkl)*. (3.9)

Proposition 3.1. The following are equivalent.

(i) Sk is linearly independent.
(ii) det(Gk)>0.

(iii) For each j # Rk , det(Mk( j))>0.

(iv) For each j # Rk , [vm
k, j : m=1, 2, ..., r] is linearly independent.

Proposition 3.1 follows from the following lemma.

Lemma 3.1. Let C :=(Cij)
r
i, j=1 be a block matrix of size nr_nr, where

Cij , i, j=1, 2, ..., r, are n_n circulant matrices of level s. Let *l
ij , l=

1, 2, ..., n, be the eigenvalues of Cij . Set

4(l) :=(*l
ij)

r
i, j=1 and 4 :=diag(4(1), ..., 4(n)).

Then there exists a unitary matrix U such that

C=U*4U. (3.10)

Proof. For i, j=1, 2, ..., r, let

Bij :=diag(*1
ij , ..., *n

ij)

and B :=(Bij)
r
i, j=1 . Then Cij=F*BijF for some unitary matrix F (a

Kronecker product of s Fourier matrices) (see [11]). It follows that

C=diag(F*, ..., F*) B diag(F, ..., F ), (3.11)

where diag(F, ..., F ) is a block diagonal matrix with r diagonal blocks each
of which is of order n. Observe that 4 can be obtained from B by inter-
changing rows and columns. Thus, there exists an orthogonal matrix P
such that B=P*4P. Setting U=P diag(F, ..., F ) in (3.11) leads to (3.10). K

The proof of Proposition 3.1 also leads to equivalent conditions for
Sk=[Tl

k,m
k : m=1, 2, ..., r, l # Lk] to be an orthonormal set.

Corollary 3.1. The following are equivalent.

(i) Sk is an orthonormal set.
(ii) Gk=Irdk , the rd k_rd k identity matrix.
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(iii) For each j # Rk , Mk( j)=(1�d k) Ir .

(iv) For each j # Rk , [vm
k, j : m=1, 2, ..., r] is an orthogonal set, and

&vm
k, j &

2=1�d k, m=1, 2, ..., r.

Suppose now that the set [Tl
k,m

k : m=1, 2, ..., r, l # Lk] forms a basis
of Vk . Then

Vk={f # L2([0, 2?)s): f= :
r

m=1

:
l # Lk

:m(l) Tl
k ,m

k , :1 , ..., :r # S(Mk)= .

Equivalently,

Vk={f # L2([0, 2?)s): f� (n)= :
r

m=1

:̂m(n) ,� m
k (n), :̂1 , ..., :̂r # S(Dk)= . (3.12)

It turns out that the polyphase splines vm
k, j , m=1, 2, ..., r, j # Rk , form an

alternative basis of Vk , and such a basis will greatly facilitate the construc-
tion of multiwavelets in the next section.

Proposition 3.2. Suppose that ,k , k�0, is an L2-solution of the periodic
matrix refinement equation (1.9). Then for k�0,

Sk=[Tl
k,m

k : m=1, 2, ..., r, l # Lk]

is a basis of Vk if and only if

[vm
k, j : m=1, 2, ..., r, j # Rk]

is also a basis of Vk , where vm
k, j are as defined in (3.5). Furthermore,

vk, j= :
l # R1

H� k+1( j+Dkl) vk+1, j+D kl , j # Rk , (3.13)

where vk, j=(v1
k, j , ..., vr

k, j)
T.

Proof. Suppose that [vm
k, j : m=1, 2, ..., r, j # Rk] is a basis of Vk . Then

[vm
k, j : m=1, 2, ..., r] is linearly independent for each j # Rk . It follows from

Proposition 3.1 that Sk is linearly independent, and hence a basis of Vk .
Conversely, suppose that Sk is a basis of Vk . For each m=1, 2, ..., r and

j # Rk , since

vm
k, j(x)= :

p # Z s

,� m
k ( j+Dkp) ei( j+Dkp) } x,

87PERIODIC MULTIWAVELETS



we have

v̂m
k, j(n)={,� m

k ( j+Dkp),
0,

if n= j+Dkp for some p # Zs,
otherwise.

(3.14)

Thus, if we define :̂1 , ..., :̂r # S(Dk) by :̂+ #0 for +{m, and

:̂m(l)={1, if l= j,
0, if l{ j,

then v̂m
k, j(n)=�r

+=1 :̂+(n) ,� +
k(n) for all n # Zs. By (3.12), this shows that

vm
k, j # Vk for all m=1, 2, ..., r and j # Rk .
Now, to prove that the set [vm

k, j : m=1, 2, ..., r, j # Rk] is a basis of Vk ,
it suffices to show that it is linearly independent, since dim Vk=r |Rk |. By
Parseval's identity and (3.14), we have

(vm
k, j , v+

k, l)= :
n # Z s

v̂m
k, j (n) v̂+

k, l(n)=0 if j{l, (3.15)

for all m, +=1, 2, ..., r. Suppose that

:
r

+=1

:
j # Rk

c+, jv+
k, j=0, (3.16)

where c+, j # C. Fix l # Rk . Then, by (3.15), for each m=1, 2, ..., r, taking
inner product on both sides of (3.16) with vm

k, l gives

:
r

+=1

c� +, l (vm
k, l , v+

k, l) =0.

Hence we obtain the matrix equation

Mk(l)(c� 1, l , ..., c� r, l)T=(0, ..., 0)T,

where Mk(l)=((vm
k, l , v+

k, l) ) r
m, +=1 . By the hypothesis and Proposition 3.1,

Mk(l) is invertible. It follows that c1, l= } } } =cr, l=0. Since l is arbitrary
in Rk , this completes the proof for the first part of the proposition.

The derivation of (3.13) is similar to that of [18, Proposition 5.1]. K

We have identified conditions for the scaling functions ,m
k , k�0,

m=1, 2, ..., r, to generate subspaces [Vk : k�0] satisfying MR1 and MR2.
For [Vk : k�0] to form a periodic multiresolution, �k�0 Vk must be
dense in L2([0, 2?)s) (MR3). The following theorem is a periodic analogue
of a theorem in [1], and it leads to a characterization of MR3. For
the special case of s=1, the result was established independently in [18]
and [25].
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Theorem 3.1. Let V be a subspace of L2([0, 2?)s) such that for all
k=0, 1, ..., l # Lk ,

f # V O f ( } &2?M&kl) # V. (3.17)

Then V is dense in L2([0, 2?)s) if and only if the set

0 := ,
f # V

[n # Zs: f� (n)=0] (3.18)

is empty.

Proof. Let V be dense in L2([0, 2?)s). Then V==[0]. If the set 0
defined in (3.18) is not empty, then there exists n0 # Zs such that f� (n0)=0
for all f # V. Thus

( f, ein0 } ) =0 for all f # V.

In other words, the function ein0 } lies inside V=, which is a contradiction.
Conversely, suppose that 0 is empty. To prove that V is dense in

L2([0, 2?)s), it suffices to show that if g # L2([0, 2?)s) is orthogonal to V,
then g=0. Let g # L2([0, 2?)s) satisfy

( f, g)=0 for all f # V.

Then it follows from (3.17) that for all k=0, 1, ..., l # Lk and f # V,

( f ( } &2?M&kl), g) =0. (3.19)

By Parseval's identity,

( f ( } &2?M&kl), g) = :
n # Z s

f� (n) ĝ(n) e&in } (2?M&kl).

Thus (3.19) yields

:
j # Rk

:
p # Z s

f� ( j+Dkp) ĝ( j+Dkp) e&ij } (2?M&kl)=0, l # Lk .

Consequently, in view of the finite Fourier transform (1.4) and its inverse
(1.5), we see that

:
p # Z s

f� ( j+Dkp) ĝ( j+Dkp)=0, (3.20)

for all k�0, j # Rk .
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Now, the series �n # Zs f� (n) ĝ(n) is absolutely convergent since f, g #
L2([0, 2?)s). Thus for any =>0, there exists a positive number N such that
�&m&>N | f� (m) ĝ(m)|<=. Fix n # Zs. As in the proof of Theorem 2.3, due to
the fact that all the eigenvalues of D&1 lie inside the unit circle, there exists
a positive integer K such that for k>K and p # Zs"[0],

&Dkp&>N+&n&.

Consequently, choosing k>K, (3.20) yields

| f� (n) ĝ(n)|= } :
p # Z s "[0]

f� (n+Dkp) ĝ(n+Dkp) }
� :

&m&>N

| f� (m) ĝ(m)|<=.

Hence,

f� (n) ĝ(n)=0 for all n # Zs, f # V. (3.21)

Using the assumption that the set 0 is empty, we conclude from (3.21) that
ĝ(n)=0 for all n # Zs. Thus g=0 and the proof is complete. K

Corollary 3.2. If [Vk : k�0] is a sequence of subspaces of L2([0, 2?)s)
satisfying MR1 and MR2, then �k�0 Vk is dense in L2([0, 2?)s) if and only
if the set

[n # Zs: ,� m
k (n)=0 for all k�0, m=1, 2, ..., r]

is empty.

Proof. Note that the space V :=�k�0 Vk satisfies the condition (3.17)
in Theorem 3.1. By the characterization (3.12) of Vk , we observe that

,
f # V

[n # Zs: f� (n)=0]=[n # Zs: ,� m
k (n)=0 for all k�0, m=1, 2, ..., r].

Then the result follows immediately from Theorem 3.1. K

4. CONSTRUCTION OF MULTIDIMENSIONAL PERIODIC
MULTIWAVELETS

Throughout this section, we assume that the solution of the periodic
matrix refinement equation (1.9) ak # l2(Zs)r, k�0, and that the sequence
,k defined by ,� k :=ak generates a multiresolution [Vk: k�0] of L2([0, 2?)s).
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Let vk, j , j # Rk , be the corresponding polyphase splines, and let Wk be the
orthogonal complement of Vk in Vk+1 . Since dim Vk=rd k where d is
defined by (1.2), we have dim Wk=rd k(d&1). Our strategy here is to first
construct a polyphase spline basis of Wk and then use it to obtain a multi-
wavelet basis of Wk .

Consider another sequence of vectors bk # l2(Zs)r(d&1), k�0, such that

bk(n)=G� k+1(n) ak+1(n), n # Zs, (4.1)

where G� k+1 # S(Dk+1)r(d&1)_r, the class of periodic sequences of
r(d&1)_r complex matrices of period Dk+1. Define polyphase splines

um
k, j (x) := :

p # Z s

bm
k ( j+Dkp) ei( j+D kp) } x, x # Rs, (4.2)

for k�0, j # Rk , m=1, 2, ..., r(d&1). Note that for every p # Zs, j # Rk , we
denote um

k, j+D kp :=um
k, j . Let

�m
k := :

j # Rk

um
k, j . (4.3)

Proposition 4.1. The following are equivalent.

(i) For each j # Rk , det((�p # Z s bm
k ( j+Dkp) b+

k( j+Dkp))r(d&1)
m, +=1)>0.

(ii) For each j # Rk , [um
k, j : m=1, 2, ..., r(d&1)] is linearly independent.

(iii) [Tl
k �m

k : m=1, 2, ..., r(d&1), l # Lk] is linearly independent.
(iv) [um

k, j : m=1, 2, ..., r(d&1), j # Rk] is linearly independent.

Proof. Similar to the proofs of Propositions 3.1 and 3.2. K

For each k�0, let

Nk( j) :=((um
k, j , u+

k, j) ) r(d&1)
m, +=1 , j # Rk . (4.4)

Then Nk( j) is positive semi-definite, and (4.2) implies that

Nk( j)=\ :
p # Z s

bm
k ( j+Dkp) b+

k( j+Dkp)+
r(d&1)

m, +=1

= :
p # Z s

bk( j+Dkp) bk( j+Dkp)*. (4.5)

As in the derivation of (3.9), we deduce from (4.1) and (4.5) that

Nk( j)= :
l # R1

G� k+1( j+Dkl) Mk+1( j+Dkl) G� k+1( j+Dkl)*, (4.6)
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where Mk( j) are as defined in (3.7). Hence, Condition (i) of Proposition
4.1 is equivalent to

det \ :
l # R1

G� k+1( j+Dkl) Mk+1( j+Dkl) G� k+1( j+Dkl)*+>0, (4.7)

for all j # Rk .
Analogous to (3.13) of Proposition 3.2, we note that (4.1) and (4.2)

imply that

uk, j= :
l # R1

G� k+1( j+Dkl) vk+1, j+Dkl , j # Rk , (4.8)

where uk, j=(u1
k, j , ..., ur(d&1)

k, j )T. As a consequence, we have um
k, j # Vk+1 for

all m=1, 2, ..., r(d&1), j # Rk . The following proposition gives a necessary
and sufficient condition for um

k, j to be in Wk .

Proposition 4.2. The functions um
k, j lie in Wk for all m=1, 2, ..., r(d&1)

and j # Rk if and only if

:
l # R1

G� k+1( j+Dkl) Mk+1( j+Dkl) H� k+1( j+Dkl)*=0, (4.9)

for all j # Rk .

Proof. For each m=1, 2, ..., r(d&1), j # Rk , since um
k, j # Vk+1 and Wk

is the orthogonal complement of Vk in Vk+1 , we see that um
k, j # Wk if and

only if (um
k, j , v+

k, l) =0 for all +=1, 2, ..., r, l # Rk . It is clear that for all +,
(um

k, j , v+
k, l)=0 if j{l. Hence, um

k, j # Wk for all m=1, 2, ..., r(d&1) and
j # Rk if and only if

((um
k, j , v+

k, j) )r(d&1), r
m, +=1 =0 for all j # Rk . (4.10)

Now, by (3.13), (3.15), and (4.8), we deduce that (4.10) is precisely (4.9),
and this concludes the proof of the proposition. K

With the given sequence of vectors ak # l2(Zs)r and the associated vk, j

and H� k+1 # S(Dk+1)r_r, Propositions 4.1 and 4.2 show that the construc-
tion of a polyphase spline basis (hence a wavelet basis via (4.3)) for Wk

amounts to finding G� k+1 # S(Dk+1)r(d&1)_r such that the conditions (4.7)
and (4.9) are satisfied. Therefore, the wavelet construction problem can be
formulated as follows:
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Problem. For each k=0, 1, ..., given that

det(Mk( j))=det \ :
l # R1

H� k+1( j+Dkl) Mk+1( j+Dkl) H� k+1( j+Dkl)*+
>0 (4.11)

for all j # Rk , can we find G� k+1 # S(Dk+1)r(d&1)_r such that (4.7) and (4.9)
hold for all j # Rk?

Before proving that the answer to the above question is affirmative, we
need the following lemma.

Lemma 4.1. Let H and G be p_n and q_n matrices respectively, where
p+q=n. Suppose that the n_n matrix ( H

G) is invertible and HG*=0.
Then for any n_n positive definite Hermitian matrix S, the matrix ( HS

G ) is
invertible.

Proof. Since S is a positive definite Hermitian matrix, there exists a
unitary n_n matrix U such that U*SU=4, where 4 is a diagonal matrix
whose diagonal entries are positive real numbers. Therefore S=U4U*.
Note that

\H
G+ U=\HU

GU+
is invertible, and (HU)(GU)*=HG*=0. Thus, if we can show that ( HU4

GU )
is invertible, then ( HS

G )=( HU4
GU ) U* will be invertible. We have therefore

reduced the proof of the lemma to the case when S is a diagonal matrix
whose diagonal entries are all positive real numbers.

Let

v1 u1

H=\ b + , G=\ b + ,

vp uq

where vi and uj are 1_n matrices. Note that [v1 , ..., vp] and [u1 , ..., uq] are
linearly independent sets of vectors in Cn. Let S=diag(:1 , ..., :n), :i>0,
and

v$1

HS=\ b + ,

v$p
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where v$i , i=1, 2, ..., p, are 1_n matrices. Then the set [v$1 , ..., v$p] is again
linearly independent in Cn.

Suppose to the contrary that the matrix ( HS
G ) is not invertible. Then there

exist *1 , ..., *p , #1 , ..., #q # C, with *k {0 and #l {0 for some k=1, 2, ..., p,
l=1, 2, ..., q, such that

*1 v$1+ } } } +*p v$p+#1u1+ } } } +#quq=0. (4.12)

Since HG*=0, we have (vi , uj)=0 for all i=1, 2, ..., p, j=1, 2, ..., q,
where ( } , } ) is the standard inner product in Cn. Hence, for each
i=1, 2, ..., p, taking inner product on both sides of (4.12) with vi gives

:
p

j=1

(vi , v$j) *� j=0.

Consequently, we obtain the matrix equation

Ax=0, (4.13)

where A=((vi , v$j) ) p
i, j=1 , x=(*� 1 , ..., *� p)T{0.

Now, we claim that A is invertible. To see this, we define row vectors
w1 , ..., wp # Cn by

w1

\ b + :=H diag(- :1 , ..., - :n ).

wp

Then it can be easily checked that

(wi , wj) =(vi , v$j) for all i, j=1, 2, ..., p.

Therefore A is the Gram matrix of the linearly independent set [w1 , ..., wp],
and it follows that A is invertible. Hence, (4.13) implies that x=0, which
is a contradiction. K

Theorem 4.1. Suppose that for each k�0 and j # Rk , det(Mk( j))>0.
Then there exist G� k+1 # S(Dk+1)r(d&1)_r such that the conditions (4.7) and
(4.9) are satisfied for all k�0 and j # Rk .

Proof. Fix k�0, j # Rk . Let A be the rd_r matrix defined by

A :=(H� k+1( j+Dkl1) Mk+1( j+Dkl1)| } } } |

H� k+1( j+Dkld) Mk+1( j+Dkld))*,
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where l1 , ..., ld denote all the elements of R1 . By the hypothesis, the matrix

(H� k+1( j+Dkl1)| } } } |H� k+1( j+Dkld)) A

is invertible, so A has rank r. Thus, we can find an invertible rd_rd matrix
Q (a product of elementary matrices) such that

QA=\Tr

0 + ,

where Tr denotes an r_r upper-triangular matrix of rank r. Write Q=( Q1
Q2

),
where Q1 and Q2 are matrices of sizes r_rd and r(d&1)_rd respectively.
Note that Q2 is of rank r(d&1), and Q2 A=0. Hence, if we define
G� k+1( j+Dkl), l # R1 , by

Q2=(G� k+1( j+Dkl1)| } } } |G� k+1( j+Dkld)),

then we obtain

:
l # R1

G� k+1( j+Dkl) Mk+1( j+Dkl) H� k+1( j+Dkl)*=0; (4.14)

that is, (4.9) holds.
It remains to show that the G� k+1( j+Dkl), l # R1 , defined above satisfy

(4.7). Let

P :=(H� k+1( j+Dkl1) Mk+1( j+Dkl1)| } } } |

H� k+1( j+Dkld) Mk+1( j+Dkld))=A*,

and let

S :=diag(Mk+1( j+Dkl1)&1, ..., Mk+1( j+Dkld)&1),

an rd_rd block diagonal matrix. Note that S is a positive definite Hermitian
matrix, and by (4.14), we have PQ*2=0. Furthermore, since P and Q2 have
ranks r and r(d&1) respectively, we see that the matrix ( P

Q2
) is invertible.

Hence, it follows from Lemma 4.1 that

\PS
Q2+=\H� k+1( j+Dkl1) | } } } |H� k+1( j+Dkld)

G� k+1( j+Dkl1) | } } } |G� k+1( j+Dkld) +
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is invertible. Now, by (3.9), (4.6), and (4.14), we have

\PS
Q2+ } diag(Mk+1( j+Dkl1), ..., Mk+1( j+Dkld)) } \PS

Q2+
*

=\ Mk( j)
0 } 0

Nk( j) + .

Observe that the determinant of the product of matrices in the above
identity is a positive real number. Consequently, we get

det(Mk( j)) det(Nk( j))>0,

and hence det(Nk( j))>0. That is, (4.7) is satisfied. This completes the
proof of the theorem. K

Remark 2. The proof of Theorem 4.1 gives an algorithm for obtaining
G� k+1 # S(Dk+1)r(d&1)_r, k�0, which are clearly not unique. Thus, we
have a constructive method for the construction of wavelet bases once we
have a sequence of vectors ak # l2(Zs)r, k�0, that gives a multiresolution
[Vk : k�0] of L2([0, 2?)s) via the sequence ,k , k�0, defined by ,� k :=ak .

In the case when the set

Sk=[Tl
k,m

k : m=1, 2, ..., r, l # Lk]

forms an orthonormal basis of Vk for each k�0, we can actually construct
an orthonormal wavelet basis for Wk . First of all, by Corollary 3.1, Sk

being an orthonormal basis of Vk is equivalent to

Mk( j)=((vm
k, j , v+

k, j) ) r
m, +=1=

1
d k Ir

for each j # Rk , where Ir denotes the r_r identity matrix. Hence, (3.9)
becomes

:
l # R1

H� k+1( j+Dkl) H� k+1( j+Dkl)*=dIr , (4.15)

and (4.9) reduces to

:
l # R1

G� k+1( j+Dkl) H� k+1( j+Dkl)*=0. (4.16)

Next, by an analogue of Corollary 3.1, we see that

[Tl
k�m

k : m=1, 2, ..., r(d&1), l # Lk],
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where �m
k is as defined in (4.3), forms an orthonormal basis for Wk if and

only if

Nk( j)=((um
k, j , u+

k, j) ) r(d&1)
m, +=1=

1
d k Ir(d&1) .

Thus, (4.6) yields

:
l # R1

G� k+1( j+Dkl) G� k+1( j+Dkl)*=dIr(d&1) . (4.17)

Hence, the problem of constructing an orthonormal wavelet basis for Wk

reduces to finding G� k+1 satisfying the conditions (4.16) and (4.17). The
following theorem gives an algorithm for obtaining such G� k+1( j).

Theorem 4.2. Suppose that for each k�0 and j # Rk , (4.15) holds. Then
there exist G� k+1 # S(Dk+1)r(d&1)_r such that the conditions (4.16) and
(4.17) are satisfied for all k�0 and j # Rk .

Proof. Fix k�0, j # Rk . Set

A :=
1

- d
(H� k+1( j+Dkl1)| } } } |H� k+1( j+Dkld))*.

Then (4.15) can be written as A*A=Ir . Therefore the r columns of A form
an orthonormal set in Crd. Hence, there exists a unitary rd_rd matrix Q
such that

QA=\Ir

0 + .

Note that Q is an extension of A*, so we can write Q as Q=( A*
B ) for some

r(d&1)_rd matrix B. Now, we define G� k+1( j+Dkl), l # R1 , by

B=
1

- d
(G� k+1( j+Dkl1)| } } } |G� k+1( j+Dkld)).

Since Q is unitary, we have

QQ*=\ A*A
BA } A*B*

BB* +=\ Ir

0 } 0
Ir(d&1) + .
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It follows that

:
l # R1

G� k+1( j+Dkl) G� k+1( j+Dkl)*=dIr(d&1) ,

and

:
l # R1

G� k+1( j+Dkl) H� k+1( j+Dkl)*=0.

This finishes the proof of the theorem. K

Based on the algorithm in the proof of Theorem 4.1, we can construct
matrices G� k+1 # S(Dk+1)r(d&1)_r, k�0, which lead to functions �m

k , k�0,
m=1, 2, ..., r, such that [Tl

k�m
k : m=1, 2, ..., r, l # Lk] is a basis of Wk for

every k�0. A natural question one would ask is what are the choices of
G� k+1 # S(Dk+1)r(d&1)_r, k�0, that yield a Riesz basis of the entire space
L2([0, 2?)s)? The following theorem provides us with an answer.

Theorem 4.3. Suppose that there exist positive constants A and B such
that

A
d k Ir(d&1) � :

l # R1

G� k+1( j+Dkl) Mk+1( j+Dkl) G� k+1( j+Dkl)*

�
B
d k Ir(d&1) , (4.18)

for all k�0 and j # Rk . Then the collection of functions

[,m
0 : m=1, 2, ..., r] _ [Tl

k �m
k : k�0, m=1, 2, ..., r(d&1), l # Lk] (4.19)

forms a Riesz basis of L2([0, 2?)s).

Remark 3. It follows from (4.6) that (4.18) is equivalent to

A
d k &x&2�xNk( j) x*�

B
d k &x&2, (4.20)

for all k�0, j # Rk and x=(x1 , ..., xr(d&1)) # Cr(d&1).

Proof of Theorem 4.3. For k�0, j # Rk , since Nk( j) :=((um
k, j , u+

k, j) )r(d&1)
m, +=1

is positive definite, the linearly independent set [um
k, j : m=1, 2, ..., r(d&1)] can

be orthonormalized to give an orthonormal set [u~ m
k, j : m=1, 2, ..., r(d&1)]

by

u~ k, j :=Nk( j)&1�2 uk, j ,
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where uk, j=(u1
k, j , ..., ur(d&1)

k, j )T and u~ k, j=(u~ 1
k, j , ..., u~ r(d&1)

k, j )T (see [21,
pp. 25�26]). Thus [u~ m

k, j : m=1, 2, ..., r(d&1), j # Rk] forms an orthonormal
basis of Wk for every k�0. Similarly, [v~ m

0, 0 : m=1, 2, ..., r], where
v~ 0, 0 :=M0(0)&1�2 v0, 0 , forms an orthonormal basis of V0 . Then it follows
from the orthogonal decomposition

L2([0, 2?)s)=V0 � =W0 � =W1 � = } } }

that the collection

[v~ m
0, 0 : m=1, 2, ..., r] _ [u~ m

k, j : k�0, m=1, 2, ..., r(d&1), j # Rk]

is an orthonormal basis of L2([0, 2?)s).
Since |Lk |=|Rk | for k�0, there exists a bijection {k : Lk � Rk for every

k�0. Now, define a linear operator S on L2([0, 2?)s) by

S( f ) :=p̂0(0) M0(0)1�2 v~ 0, 0+ :
�

k=0

:
j # Rk

q̂k( j) Nk( j)1�2 u~ k, j ,

f # L2([0, 2?)s), (4.21)

where p̂0(0) :=(( f, v~ 1
0, 0) , ..., ( f, v~ r

0, 0) ), and

q̂k( j) :=\ :
l # Lk

( f, u~ 1
k, {k (l)) e&ij } (2?M&k l), ..., :

l # Lk

( f, u~ r(d&1)
k, {k (l)) e&ij } (2?M&k l)+ .

The operator S is well defined. Indeed, for f # L2([0, 2?)s), we have

& p̂0(0)&2+ :
�

k=0

:
j # Rk

1
d k &q̂k( j)&2

= :
r

m=1

|( f, v~ m
0, 0) | 2+ :

�

k=0

:
r(d&1)

m=1

:
j # Rk

|( f, u~ m
k, j) |2=& f &2<�, (4.22)

where p̂0(0)=( p̂1
0(0), ..., p̂r

0(0)), q̂k( j)=(q̂1
k( j), ..., q̂ r(d&1)

k ( j)), and the
relation (1.7) is used to establish

1
d k :

j # Rk

|q̂m
k ( j)|2= :

l # Lk

|( f, u~ m
k, {k (l)) |2

= :
j # Rk

|( f, u~ m
k, j) |2, m=1, 2, ..., r(d&1).

Since M0(0) is a positive definite constant matrix, all its eigenvalues
*1 , ..., *r are real and positive and,

A0Ir�M0(0)�B0 Ir , (4.23)
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where A0 :=min[*1 , ..., *r] and B0 :=max[*1 , ..., *r]. Thus

&S( f )&2=p̂0(0) M0(0) p̂0(0)*+ :
�

k=0

:
j # Rk

q̂k( j) Nk( j) q̂k( j)*

�B0 &p̂0(0)&2+ :
�

k=0

:
j # Rk

B
d k &q̂k( j)&2, (4.24)

which is finite by (4.22).
Next, for k�0, m=1, 2, ..., r(d&1) and j # Rk , it follows from (4.3) that

S(u~ m
k, j)= :

& # Rk

um
k, &e&i& } (2?M&k {k

&1( j))=T {k
&1( j)

k �m
k .

Also, for m=1, 2, ..., r, S(v~ m
0, 0)=,m

0 .
It remains to show that S is an isomorphism. Let

f := :
r

m=1

( f, v~ m
0, 0) v~ m

0, 0+ :
�

k=0

:
r(d&1)

m=1

:
j # Rk

( f, u~ m
k, j) u~ m

k, j

be any function in L2([0, 2?)s). Then it follows from (4.20), (4.22)�(4.24)
that

min[A0 , A] & f &2�&S( f )&2�max[B0 , B] & f &2.

Thus S is an isomorphism, and the collection

[,m
0 : m=1, 2, ..., r] _ [T {k

&1( j)
k �m

k : k�0, m=1, 2, ..., r(d&1), j # Rk]

forms a Riesz basis of L2([0, 2?)s). Since {k : Lk � Rk is a bijection for all
k�0, we conclude that the collection (4.19) is a Riesz basis of L2([0, 2?)s).

K

It should be mentioned that in the orthonormal case handled by
Theorem 4.2, the condition (4.18) is automatically satisfied with A=B=1,
and the corresponding collection of functions (4.19) forms an orthonormal
basis of L2([0, 2?)s).

5. AN EXAMPLE

Let M=D=2I2 . Then Lk=Rk=[(l1 , l2) # Z2: l1 , l2=0, 1..., 2k&1].
For k=0, 1, ..., and j=( j1 , j2) # Rk+1 , define H� k+1 # S(Dk+1) by

H� k+1( j)=(cos 2&k&1?j1)m1 (cos 2&k&1?j2)m2 (cos 2&k&1?( j1+ j2))m3,

(5.1)
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where m1 , m2 , m3 are positive integers. Then for n # Z2,

:
�

l=1

|H� l(n)&1|<�, (5.2)

and for k�0,

:
l # R1

|H� k+1( j+2kl)| 2�1, j # Rk . (5.3)

Furthermore, it follows from the relation

`
�

l=1

(cos 2&lz)m=\sin z
z +

m

, z # C,

that for n=(n1 , n2) # Z2,

`
�

l=k+1

H� l(n)=\sin 2&k?n1

2&k?n1 +
m1

\sin 2&k?n2

2&k?n2 +
m2

\sin 2&k?(n1+n2)
2&k?(n1+n2) +

m3

.

(5.4)

Thus

,� k(n) := `
�

l=k+1

H� l(n), n # Z2, (5.5)

is the Fourier sequence of a function ,k # L2([0, 2?)2).
Now for k�0, j # Rk ,

Mk( j)= :
p # Z 2

|,� k( j+2kp)| 2. (5.6)

To show that Mk( j)>0 for all j # Rk , first note that for j=( j1 , j2) # Rk , if
j1+ j2<2k, then

|,� k( j)|2=\sin 2&k?j1

2&k?j1 +
2m1

\sin 2&k?j2

2&k?j2 +
2m2

\sin 2&k?( j1+ j2)
2&k?( j1+ j2) +

2m3

>0.

On the other hand, if j1+ j2�2k, then j1 {0, j2 {0, 0� j1+ j2&2k<2k

and &2k< j1&2k<0. Thus with p=(&1, 0),

|,� k( j+2kp)|2=\sin 2&k?( j1&2k)
2&k?( j1&2k) +

2m1

\sin 2&k?j2

2&k?j2 +
2m2

_\sin 2&k?( j1+ j2&2k)
2&k?( j1+ j2&2k) +

2m3

>0.
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Therefore for all j # Rk , Mk( j)>0. This shows that [Tl
k,k : l # Lk] is

linearly independent.
By (5.4) and (5.5), for any n # Z2,

,� k(n) � 1 as k � �.

Therefore,

[n # Z2: ,� k(n)=0 for all k�0]=<.

Hence the functions ,k , k�0, generate a periodic multiresolution [Vk : k�0]
of L2([0, 2?)2).

To construct wavelet bases for the orthogonal complement Wk of Vk in
Vk+1 , it suffices to find matrices G� k+1 # S(Dk+1)3_1 satisfying (4.7) and
(4.9) for all j # Rk . They are readily obtained using the algorithm described
in the proof of Theorem 4.1.

In order to describe the matrices G� k+1 , we define the set

B :=[(0, 0, 0)T, (1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T],

and consider a bijection e: R1 � B with e(0)=0. For j # Rk , let :k, j (q),
q # R1 , be arbitrary nonzero complex numbers. Since Mk( j)>0, we can
choose an l # R1 such that H� k+1( j+2kl){0. Then for q # R1 ,

G� k+1( j+2kq)

={& :
p # R1

:k, j ( p&l) H� k+1( j+2kp) Mk+1( j+2kp)
H� k+1( j+2kl) Mk+1( j+2kl)

e( p&l),

:k, j (q&l) e(q&l),

q=l,

q{l.
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